Notizen 1089

## Number of Benzenoid Hydrocarbons

Ivan Gutman

Faculty of Science, University of Kragujevac, Yugoslavia

Z. Naturforsch. **41 a**, 1089 – 1090 (1986); received July 5, 1986

The number of benzenoid hydrocarbons with h hexagons can be estimated by means of the formula  $B_h = 0.045 \ h^{-3/2} (5.4)^h$ . The analogous estimate for the number of catacondensed benzenoids is  $C_h = 0.049 \ h^{-5/4} (4.27)^h$ .

## Introduction

The problem of the enumeration of alkanes and related chemical compounds has been solved by Pólya long time ago [1, 2]. Another problem of this kind, namely the enumeration of benzenoid hydrocarbons, seems to be much more difficult and was not satisfactorily solved so far. In spite of serious attempts of a number of mathematicians [3-6], at the present moment we do not know anything better than to construct the benzenoids and then to count them. Several approaches along these lines have been elaborated [7-15], usually based on an extensive use of computers.

In the following we shall be interested in geometrically planar, simply connected benzenoids [16]. The number of such systems, possessing h hexagons will be denoted by  $B_h$ . In addition to this,  $C_h$  is the number of geometrically planar catacondensed benzenoids [16] with h hexagons. The numbers  $B_h$  and  $C_h$  are nowadays known for  $h \le 11$  and are given in Tables 1 and 2.

For small values of h,  $B_h$  and  $C_h$  can be obtained without difficulty. For h up to 10,  $B_h$  and  $C_h$  were first reported by Knop et al. [11, 12], whereas  $B_{11}$  and  $C_{11}$  were recently calculated by Doroslovački and Tošić [15]. The amount of computing, required for the evaluation of  $B_h$  for  $h \ge 10$  is enormous and increases very rapidly with the increasing number of hexagons. Therefore, even when quite powerful computing machines have been employed, the enumeration procedure could not exceed h = 10 [11, 14] and h = 11 [15].

These difficulties motivated us to develop approximate expressions for  $B_h$  and  $C_h$  which enable the estimation of these numbers for large (greater than eleven) values of h.

Asymptotic expressions for the estimation of the number of combinatorial objects of certain types are often met in the theory of enumeration [17]. Already Pólya [1] deduced such a formula for the number of alkanes. In a great number of cases [17], the asymptotes have the form

$$X_n \sim a n^p b^n; \quad n \to \infty$$
, (1)

where a and b are some constants and the exponent p is a rational number.

Reprint requests to Prof. Dr. Ivan Gutman, Faculty of Science, P.O. Box 60, YU-34000 Kragujevac, Yugoslavia.

In particular, Harary and Read [5] showed that for large values of h.

$$H_h \sim \sqrt{\frac{5}{4}} \frac{(2h-1)!}{(h-1)!} \left(\frac{5}{4}\right)^h,$$
 (2)

where  $H_h$  counts the catacondensed benzenoids (both geometrically planar and non-planar), with h hexagons. Using the Stirling approximation, we can transform (2) into

$$H_h \sim \sqrt{\frac{5}{16\pi}} h^{-5/2} 5^h,$$
 (3)

which is just a special case of (1).

## An Approximate Asymptote for $C_h$

Bearing in mind the result (3), we considered the formula

$$C_h \sim a h^p b^h$$
, (4)

which is expected to hold for sufficiently large values of h. In order to determine the exponent p we have calculated the expression

$$b_h = \left(\frac{h}{h+1}\right)^p \frac{C_{h+1}}{C_h}$$

for the known  $C_h$ 's (see Table 1). If  $C_h$  behaves according to (4), then for a properly chosen p the sequence  $b_1$ ,  $b_2$ ,  $b_3$ , ... will rapidly converge to its limit value b. By varying p we found that the best convergence occurs for p=-5/4. (As a matter of fact, the choice p=-1.25 is better than p=-1.24 or p=1.26.) The last calculated members of the sequence  $b_h$ , for p=-5/4 are given as

| $b_h$              |
|--------------------|
| 4.116<br>4.198     |
| 4.26887<br>4.26895 |
|                    |

from which we conclude that the limiting value of  $b_h$  is about 4.27.

It remains to determine the parameter a as the limit of the sequence  $a_1, a_2, a_3, \ldots$ , where

$$a_h = C_h/(h^p b^h) .$$

The fact that for p = -5/4 and b = 4.27,

| h  | $a_h$    |                    |
|----|----------|--------------------|
| 8  | 0.0500   |                    |
| 9  | 0.049187 |                    |
| 10 | 0.049174 |                    |
| 11 | 0.049162 | implies $a = 0.04$ |

0340-4811 / 86 / 0800-1089 \$ 01.30/0. – Please order a reprint rather than making your own copy.



Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

1090 Notizen

Table 1. Exact and estimated values for the number  $C_h$  of geometrically planar catacondensed benzenoid systems with h hexagons.

Table 2. Exact and estimated values for the number  $B_h$  of geometrically planar, simply connected benzenoid systems with h hexagons.

| Table 1               |           |              |     | Tab     | le 2         |
|-----------------------|-----------|--------------|-----|---------|--------------|
| h                     | $C_h$     | Estimate (5) | h   | $B_h$   | Estimate (6) |
| 1                     | 1         | 0            | 1   | 1       | 0            |
| 2<br>3<br>4<br>5<br>6 | 1         | 0            | 2 3 | l       | 0            |
| 3                     | 2<br>5    | 1            |     | 3       | 1            |
| 4                     |           | 3            | 4 5 | 22      | 5            |
| 2                     | 12        | 9            |     | 22      | 18           |
| 6                     | 36        | 32           | 6   | 81      | 76           |
| 7                     | 118       | 111          | 7   | 331     | 325          |
| 8                     | 411       | 402          | 8   | 1 435   | 1 438        |
| 9                     | 1 489     | 1 483        | 9   | 6 505   | 6 507        |
| 10                    | 5 572     | 5 552        | 10  | 30 086  | 30 002       |
| 11                    | 21 115    | 21 046       | 11  | 141 229 | 140 428      |
| 12                    | 80 604    |              | 12  |         | 665 527      |
| 13                    | 311 408   |              | 13  |         | 3 187 251    |
| 14                    | 1 212 066 |              | 14  |         | 15 400 439   |
| 15                    |           | 4 747 884    | 15  |         | 74 986 317   |

[1] G. Pólya, Z. Kristal. 93 A, 415 (1936).

G. Pólya, Acta Math. 68, 145 (1937).

D. A. Klarner, Fibonacci Quart. 3,9 (1965).

D. A. Klarner, Canad. J. Math. 19, 851 (1967).

[5] F. Harary and R. C. Read, Proc. Edinburgh Math. Soc. 17, 1 (1970).

[6] W. F. Lunnon, in: R. C. Read (Ed.), Graph Theory and Computing, Academic Press, New York 1972,

pp. 87 – 100. [7] K. Balasubramanian, J. J. Kaufman, W. S. Koski, and A. T. Balaban, J. Comput. Chem. 1, 149 (1980).

[8] J. R. Dias, J. Chem. Inf. Comput. Sci. 22, 15 (1982).

[9] J. R. Dias, Match (Mülheim) **14**, 83 (1983).

[10] J. R. Dias, J. Chem. Inf. Comput. Sci. 24, 124 (1984).
[11] J. V. Knop, K. Szymanski, Z. Jeričević, and N. Tri-

najstić, J. Comput. Chem. **4,** 23 (1983). [12] J. V. Knop, K. Szymanski, Ž. Jeričević, and N. Trinajstić, Match (Mülheim) 16, 119 (1984).

Thus we arrived at the approximate asymptotic expres-

$$C_h \sim 0.049 \, h^{-5/4} \, (4.27)^h \,,$$
 (5)

whose quality can be seen from the data given in Table 1. In Table 1 we also presented the predicted (approximate) values of  $C_{12}$ ,  $C_{13}$ ,  $C_{14}$  and  $C_{15}$ .

## An Approximate Asymptote for $B_h$

In the case of  $B_h$ , a completely analogous variational procedure gave the optimal value -1.47 for the exponent p, which is satisfactorily close to the adopted value -3/2. The choice p = -3/2 leads then to the numbers

| h           | $b_h$                                | $a_h$                          |                                                           |
|-------------|--------------------------------------|--------------------------------|-----------------------------------------------------------|
| 7<br>8<br>9 | 5.297<br>5.409<br>5.41693<br>5.41562 | 0.0449<br>0.044985<br>0.045126 | which imply $B_h \sim 0.045  h^{-3/2}  (5.4)^h . \tag{6}$ |
| 11          | -                                    | 0.045224                       | (0)                                                       |

The exact  $B_h$  values as well as those calculated by means of (6) are collected in Table 2, together which the estimates for  $B_{12}$ ,  $B_{13}$ ,  $B_{14}$  and  $B_{15}$ . Formula (6) seems to be somewhat less accurate than (5).

- [13] S. J. Cyvin and J. Brunvoll (Trondheim, Norway),
- private communication, Spring 1986. [14] J. Ciosłowski (Washington, USA), private communication, Spring 1986.
- [15] R. Doroslovački and R. Tošić (Novi Sad, Yugoslavia), private communication, Spring 1986.
- A benzenoid system is geometrically planar if its nonadjacent (regular) hexagons do not overlap. A benzenoid system is simply connected if it separates the plane into an infinite region and h finite regions, all of which are (regular) hexagons. A benzenoid system is catacondensed if no three of its hexagons are mutually adjacent. More details on benzenoid systems can be found in: I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-
- Verlag, Berlin 1986, pp. 59–61. [17] F. Harary and E. P. Palmer, Graphical Enumeration, Academic Press, New York 1973, Chapter 9.